Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-2312891

ABSTRACT

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Subject(s)
COVID-19 , Hyperglycemia , Humans , COVID-19/complications , SARS-CoV-2 , Gluconeogenesis , Blood Glucose , Retrospective Studies , Hepatocytes , Hyperglycemia/complications , Glucose
2.
Nat Metab ; 4(1): 29-43, 2022 01.
Article in English | MEDLINE | ID: covidwho-1612214

ABSTRACT

Severe cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection. We first demonstrate that GP73 secretion is induced in multiple tissues upon fasting and that GP73 stimulates hepatic gluconeogenesis through the cAMP/PKA signaling pathway. We further show that GP73 secretion is increased in cultured cells infected with SARS-CoV-2, after overexpression of SARS-CoV-2 nucleocapsid and spike proteins and in lungs and livers of mice infected with a mouse-adapted SARS-CoV-2 strain. GP73 blockade with an antibody inhibits excessive glucogenesis stimulated by SARS-CoV-2 in vitro and lowers elevated fasting blood glucose levels in infected mice. In patients with COVID-19, plasma GP73 levels are elevated and positively correlate with blood glucose levels. Our data suggest that GP73 is a glucogenic hormone that likely contributes to SARS-CoV-2-induced abnormalities in systemic glucose metabolism.


Subject(s)
COVID-19/complications , COVID-19/virology , Glucose/metabolism , Hyperglycemia/etiology , Hyperglycemia/metabolism , Membrane Proteins/metabolism , SARS-CoV-2 , Animals , Biomarkers , Cyclic AMP-Dependent Protein Kinases/metabolism , Diet, High-Fat , Disease Models, Animal , Fasting , Gene Expression , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Host-Pathogen Interactions , Humans , Hyperglycemia/blood , Liver/metabolism , Liver/pathology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/blood , Membrane Proteins/genetics , Mice , Mice, Knockout , Organ Specificity/genetics
3.
Int J Mol Sci ; 21(22)2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-927563

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every continent, registering over 1,250,000 deaths worldwide. The effects of SARS-CoV-2 on host targets remains largely limited, hampering our understanding of Coronavirus Disease 2019 (COVID-19) pathogenesis and the development of therapeutic strategies. The present study used a comprehensive untargeted metabolomic and lipidomic approach to capture the host response to SARS-CoV-2 infection. We found that several circulating lipids acted as potential biomarkers, such as phosphatidylcholine 14:0_22:6 (area under the curve (AUC) = 0.96), phosphatidylcholine 16:1_22:6 (AUC = 0.97), and phosphatidylethanolamine 18:1_20:4 (AUC = 0.94). Furthermore, triglycerides and free fatty acids, especially arachidonic acid (AUC = 0.99) and oleic acid (AUC = 0.98), were well correlated to the severity of the disease. An untargeted analysis of non-critical COVID-19 patients identified a strong alteration of lipids and a perturbation of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, aminoacyl-tRNA degradation, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. The severity of the disease was characterized by the activation of gluconeogenesis and the metabolism of porphyrins, which play a crucial role in the progress of the infection. In addition, our study provided further evidence for considering phospholipase A2 (PLA2) activity as a potential key factor in the pathogenesis of COVID-19 and a possible therapeutic target. To date, the present study provides the largest untargeted metabolomics and lipidomics analysis of plasma from COVID-19 patients and control groups, identifying new mechanisms associated with the host response to COVID-19, potential plasma biomarkers, and therapeutic targets.


Subject(s)
Coronavirus Infections/metabolism , Metabolome , Pneumonia, Viral/metabolism , Aged , Aged, 80 and over , Amino Acids/blood , Arachidonic Acid/blood , Biomarkers/blood , COVID-19 , Citric Acid Cycle , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , Gluconeogenesis , Humans , Male , Middle Aged , Oleic Acid/blood , Pandemics , Phosphatidylcholines/blood , Phosphatidylethanolamines/blood , Phospholipases A2/blood , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL